SUBROUTINE ICARUS( & debug, & debugcol, & npoints, & sunlit, & nlev, & ncol, & pfull, & phalf, & qv, & cc, & conv, & dtau_s, & dtau_c, & dtau_s_snow, & top_height, & top_height_direction, & overlap, & frac_out, & prec_frac, & skt, & emsfc_lw, & at, & dem_s, & dem_c, & dem_s_snow, & fq_isccp, & totalcldarea, & meanptop, & meantaucld, & meanalbedocld, & meantb, & meantbclr, & boxtau, & boxptop &) !$Id: icarus.f,v 4.1 2010/05/27 16:30:18 hadmw Exp $ ! *****************************COPYRIGHT**************************** ! (c) 2009, Lawrence Livermore National Security Limited Liability ! Corporation. ! All rights reserved. ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the ! following conditions are met: ! ! * Redistributions of source code must retain the above ! copyright notice, this list of conditions and the following ! disclaimer. ! * Redistributions in binary form must reproduce the above ! copyright notice, this list of conditions and the following ! disclaimer in the documentation and/or other materials ! provided with the distribution. ! * Neither the name of the Lawrence Livermore National Security ! Limited Liability Corporation nor the names of its ! contributors may be used to endorse or promote products ! derived from this software without specific prior written ! permission. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ! "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ! LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ! A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ! OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ! SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ! LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ! DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ! THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ! (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! ! *****************************COPYRIGHT******************************* ! *****************************COPYRIGHT******************************* ! *****************************COPYRIGHT******************************* ! *****************************COPYRIGHT******************************* implicit none ! NOTE: the maximum number of levels and columns is set by ! the following parameter statement INTEGER ncolprint ! ----- ! Input ! ----- INTEGER npoints ! number of model points in the horizontal INTEGER nlev ! number of model levels in column INTEGER ncol ! number of subcolumns INTEGER sunlit(npoints) ! 1 for day points, 0 for night time REAL pfull(npoints,nlev) ! pressure of full model levels (Pascals) ! pfull(npoints,1) is top level of model ! pfull(npoints,nlev) is bot of model REAL phalf(npoints,nlev+1) ! pressure of half model levels (Pascals) ! phalf(npoints,1) is top of model ! phalf(npoints,nlev+1) is the surface pressure REAL qv(npoints,nlev) ! water vapor specific humidity (kg vapor/ kg air) ! on full model levels REAL cc(npoints,nlev) ! input cloud cover in each model level (fraction) ! NOTE: This is the HORIZONTAL area of each ! grid box covered by clouds REAL conv(npoints,nlev) ! input convective cloud cover in each model ! level (fraction) ! NOTE: This is the HORIZONTAL area of each ! grid box covered by convective clouds REAL dtau_s(npoints,nlev) ! mean 0.67 micron optical depth of stratiform ! clouds in each model level ! NOTE: this the cloud optical depth of only the ! cloudy part of the grid box, it is not weighted ! with the 0 cloud optical depth of the clear ! part of the grid box REAL dtau_c(npoints,nlev) ! mean 0.67 micron optical depth of convective ! clouds in each ! model level. Same note applies as in dtau_s. REAL dtau_s_snow(npoints,nlev) ! mean 0.67 micron optical depth of stratiform ! snow in each model level INTEGER overlap ! overlap type ! 1=max ! 2=rand ! 3=max/rand INTEGER top_height ! 1 = adjust top height using both a computed ! infrared brightness temperature and the visible ! optical depth to adjust cloud top pressure. Note ! that this calculation is most appropriate to compare ! to ISCCP data during sunlit hours. ! 2 = do not adjust top height, that is cloud top ! pressure is the actual cloud top pressure ! in the model ! 3 = adjust top height using only the computed ! infrared brightness temperature. Note that this ! calculation is most appropriate to compare to ISCCP ! IR only algortihm (i.e. you can compare to nighttime ! ISCCP data with this option) INTEGER top_height_direction ! direction for finding atmosphere pressure level ! with interpolated temperature equal to the radiance ! determined cloud-top temperature ! ! 1 = find the *lowest* altitude (highest pressure) level ! with interpolated temperature equal to the radiance ! determined cloud-top temperature ! ! 2 = find the *highest* altitude (lowest pressure) level ! with interpolated temperature equal to the radiance ! determined cloud-top temperature ! ! ONLY APPLICABLE IF top_height EQUALS 1 or 3 ! ! ! 1 = old setting: matches all versions of ! ISCCP simulator with versions numbers 3.5.1 and lower ! ! 2 = default setting: for version numbers 4.0 and higher ! ! The following input variables are used only if top_height = 1 or top_height = 3 ! REAL skt(npoints) ! skin Temperature (K) REAL emsfc_lw ! 10.5 micron emissivity of surface (fraction) REAL at(npoints,nlev) ! temperature in each model level (K) REAL dem_s(npoints,nlev) ! 10.5 micron longwave emissivity of stratiform ! clouds in each ! model level. Same note applies as in dtau_s. REAL dem_c(npoints,nlev) ! 10.5 micron longwave emissivity of convective ! clouds in each ! model level. Same note applies as in dtau_s. REAL dem_s_snow(npoints,nlev) ! 10.5 micron longwave emissivity of stratiform ! snow in each ! model level. Same note applies as in dtau_s. REAL frac_out(npoints,ncol,nlev) ! boxes gridbox divided up into ! Equivalent of BOX in original version, but ! indexed by column then row, rather than ! by row then column REAL prec_frac(npoints,ncol,nlev) ! box indicator for precipitation ! 0 -> clear sky ! 1 -> LS precipitation ! 2 -> CONV precipitation ! 3 -> both ! ------ ! Output ! ------ REAL fq_isccp(npoints,7,7) ! the fraction of the model grid box covered by ! each of the 49 ISCCP D level cloud types REAL totalcldarea(npoints) ! the fraction of model grid box columns ! with cloud somewhere in them. NOTE: This diagnostic ! does not count model clouds with tau < isccp_taumin ! Thus this diagnostic does not equal the sum over all entries of fq_isccp. ! However, this diagnostic does equal the sum over entries of fq_isccp with ! itau = 2:7 (omitting itau = 1) ! The following three means are averages only over the cloudy areas with tau > isccp_taumin. ! If no clouds with tau > isccp_taumin are in grid box all three quantities should equal zero. REAL meanptop(npoints) ! mean cloud top pressure (mb) - linear averaging ! in cloud top pressure. REAL meantaucld(npoints) ! mean optical thickness ! linear averaging in albedo performed. real meanalbedocld(npoints) ! mean cloud albedo ! linear averaging in albedo performed real meantb(npoints) ! mean all-sky 10.5 micron brightness temperature real meantbclr(npoints) ! mean clear-sky 10.5 micron brightness temperature REAL boxtau(npoints,ncol) ! optical thickness in each column REAL boxptop(npoints,ncol) ! cloud top pressure (mb) in each column ! ! ------ ! Working variables added when program updated to mimic Mark Webb's PV-Wave code ! ------ REAL dem(npoints,ncol),bb(npoints) ! working variables for 10.5 micron longwave ! emissivity in part of ! gridbox under consideration REAL ptrop(npoints) REAL attrop(npoints) REAL attropmin (npoints) REAL atmax(npoints) REAL btcmin(npoints) REAL transmax(npoints) INTEGER i,j,ilev,ibox,itrop(npoints) INTEGER ipres(npoints) INTEGER itau(npoints),ilev2 INTEGER acc(nlev,ncol) INTEGER match(npoints,nlev-1) INTEGER nmatch(npoints) INTEGER levmatch(npoints,ncol) !variables needed for water vapor continuum absorption real fluxtop_clrsky(npoints),trans_layers_above_clrsky(npoints) real taumin(npoints) real dem_wv(npoints,nlev), wtmair, wtmh20, Navo, grav, pstd, t0 real press(npoints), dpress(npoints), atmden(npoints) real rvh20(npoints), wk(npoints), rhoave(npoints) real rh20s(npoints), rfrgn(npoints) real tmpexp(npoints),tauwv(npoints) character*1 cchar(6),cchar_realtops(6) integer icycle REAL tau(npoints,ncol) LOGICAL box_cloudy(npoints,ncol) REAL tb(npoints,ncol) REAL ptop(npoints,ncol) REAL emcld(npoints,ncol) REAL fluxtop(npoints,ncol) REAL trans_layers_above(npoints,ncol) real isccp_taumin,fluxtopinit(npoints),tauir(npoints) REAL albedocld(npoints,ncol) real boxarea integer debug ! set to non-zero value to print out inputs ! with step debug integer debugcol ! set to non-zero value to print out column ! decomposition with step debugcol integer rangevec(npoints),rangeerror integer index1(npoints),num1,jj,k1,k2 real rec2p13,tauchk,logp,logp1,logp2,atd real output_missing_value character*10 ftn09 DATA isccp_taumin / 0.3 / DATA output_missing_value / -1.E+30 / DATA cchar / ' ','-','1','+','I','+'/ DATA cchar_realtops / ' ',' ','1','1','I','I'/ ! ------ End duplicate definitions common to wrapper routine tauchk = -1.*log(0.9999999) rec2p13=1./2.13 ncolprint=0 if ( debug.ne.0 ) then j=1 write(6,'(a10)') 'j=' write(6,'(8I10)') j write(6,'(a10)') 'debug=' write(6,'(8I10)') debug write(6,'(a10)') 'debugcol=' write(6,'(8I10)') debugcol write(6,'(a10)') 'npoints=' write(6,'(8I10)') npoints write(6,'(a10)') 'nlev=' write(6,'(8I10)') nlev write(6,'(a10)') 'ncol=' write(6,'(8I10)') ncol write(6,'(a11)') 'top_height=' write(6,'(8I10)') top_height write(6,'(a21)') 'top_height_direction=' write(6,'(8I10)') top_height_direction write(6,'(a10)') 'overlap=' write(6,'(8I10)') overlap write(6,'(a10)') 'emsfc_lw=' write(6,'(8f10.2)') emsfc_lw do j=1,npoints,debug write(6,'(a10)') 'j=' write(6,'(8I10)') j write(6,'(a10)') 'sunlit=' write(6,'(8I10)') sunlit(j) write(6,'(a10)') 'pfull=' write(6,'(8f10.2)') (pfull(j,i),i=1,nlev) write(6,'(a10)') 'phalf=' write(6,'(8f10.2)') (phalf(j,i),i=1,nlev+1) write(6,'(a10)') 'qv=' write(6,'(8f10.3)') (qv(j,i),i=1,nlev) write(6,'(a10)') 'cc=' write(6,'(8f10.3)') (cc(j,i),i=1,nlev) write(6,'(a10)') 'conv=' write(6,'(8f10.2)') (conv(j,i),i=1,nlev) write(6,'(a10)') 'dtau_s=' write(6,'(8g12.5)') (dtau_s(j,i),i=1,nlev) write(6,'(a10)') 'dtau_c=' write(6,'(8f10.2)') (dtau_c(j,i),i=1,nlev) write(6,'(a10)') 'dtau_s_snow=' write(6,'(8g12.5)') (dtau_s_snow(j,i),i=1,nlev) write(6,'(a10)') 'skt=' write(6,'(8f10.2)') skt(j) write(6,'(a10)') 'at=' write(6,'(8f10.2)') (at(j,i),i=1,nlev) write(6,'(a10)') 'dem_s=' write(6,'(8f10.3)') (dem_s(j,i),i=1,nlev) write(6,'(a10)') 'dem_c=' write(6,'(8f10.3)') (dem_c(j,i),i=1,nlev) write(6,'(a10)') 'dem_s_snow=' write(6,'(8f10.3)') (dem_s_snow(j,i),i=1,nlev) enddo endif ! ---------------------------------------------------! if (ncolprint.ne.0) then do j=1,npoints,1000 write(6,'(a10)') 'j=' write(6,'(8I10)') j enddo endif if (top_height .eq. 1 .or. top_height .eq. 3) then do j=1,npoints ptrop(j)=5000. attropmin(j) = 400. atmax(j) = 0. attrop(j) = 120. itrop(j) = 1 enddo do 12 ilev=1,nlev do j=1,npoints if (pfull(j,ilev) .lt. 40000. .and. & pfull(j,ilev) .gt. 5000. .and. & at(j,ilev) .lt. attropmin(j)) then ptrop(j) = pfull(j,ilev) attropmin(j) = at(j,ilev) attrop(j) = attropmin(j) itrop(j)=ilev end if enddo 12 continue do 13 ilev=1,nlev do j=1,npoints if (at(j,ilev) .gt. atmax(j) .and. & ilev .ge. itrop(j)) atmax(j)=at(j,ilev) enddo 13 continue end if if (top_height .eq. 1 .or. top_height .eq. 3) then do j=1,npoints meantb(j) = 0. meantbclr(j) = 0. end do else do j=1,npoints meantb(j) = output_missing_value meantbclr(j) = output_missing_value end do end if ! -----------------------------------------------------! ! ---------------------------------------------------! do ilev=1,nlev do j=1,npoints rangevec(j)=0 if (cc(j,ilev) .lt. 0. .or. cc(j,ilev) .gt. 1.) then ! error = cloud fraction less than zero ! error = cloud fraction greater than 1 rangevec(j)=rangevec(j)+1 endif if (conv(j,ilev) .lt. 0. .or. conv(j,ilev) .gt. 1.) then ! ' error = convective cloud fraction less than zero' ! ' error = convective cloud fraction greater than 1' rangevec(j)=rangevec(j)+2 endif if (dtau_s(j,ilev) .lt. 0.) then ! ' error = stratiform cloud opt. depth less than zero' rangevec(j)=rangevec(j)+4 endif if (dtau_c(j,ilev) .lt. 0.) then ! ' error = convective cloud opt. depth less than zero' rangevec(j)=rangevec(j)+8 endif if (dem_s(j,ilev) .lt. 0. .or. dem_s(j,ilev) .gt. 1.) then ! ' error = stratiform cloud emissivity less than zero' ! ' error = stratiform cloud emissivity greater than 1' rangevec(j)=rangevec(j)+16 endif if (dem_c(j,ilev) .lt. 0. .or. dem_c(j,ilev) .gt. 1.) then ! ' error = convective cloud emissivity less than zero' ! ' error = convective cloud emissivity greater than 1' rangevec(j)=rangevec(j)+32 endif if (dtau_s_snow(j,ilev) .lt. 0.) then ! ' error = stratiform snow opt. depth less than zero' rangevec(j)=rangevec(j)+64 endif if (dem_s_snow(j,ilev) .lt. 0. .or. dem_s_snow(j,ilev) .gt. 1.) then ! ' error = stratiform snow emissivity less than zero' ! ' error = stratiform snow emissivity greater than 1' rangevec(j)=rangevec(j)+128 endif enddo rangeerror=0 do j=1,npoints rangeerror=rangeerror+rangevec(j) enddo if (rangeerror.ne.0) then write (6,*) 'Input variable out of range' write (6,*) 'rangevec:' write (6,*) rangevec !! local mod for CAM/CCSM - comment out per Brian Eaton, jek !! call flush(6) STOP endif enddo ! ! ---------------------------------------------------! ! ! ---------------------------------------------------! ! COMPUTE CLOUD OPTICAL DEPTH FOR EACH COLUMN and ! put into vector tau !initialize tau and albedocld to zero do 15 ibox=1,ncol do j=1,npoints tau(j,ibox)=0. albedocld(j,ibox)=0. boxtau(j,ibox)=output_missing_value boxptop(j,ibox)=output_missing_value box_cloudy(j,ibox)=.false. enddo 15 continue !compute total cloud optical depth for each column do ilev=1,nlev !increment tau for each of the boxes do ibox=1,ncol do j=1,npoints if (frac_out(j,ibox,ilev).eq.1) then tau(j,ibox)=tau(j,ibox) & + dtau_s(j,ilev) endif if (frac_out(j,ibox,ilev).eq.2) then tau(j,ibox)=tau(j,ibox) & + dtau_c(j,ilev) end if if ((prec_frac(j,ibox,ilev).eq.1) .or. & (prec_frac(j,ibox,ilev).eq.3)) then tau(j,ibox)=tau(j,ibox) & + dtau_s_snow(j,ilev) end if enddo enddo ! ibox enddo ! ilev if (ncolprint.ne.0) then do j=1,npoints ,1000 write(6,'(a10)') 'j=' write(6,'(8I10)') j write(6,'(i2,1X,8(f7.2,1X))') & ilev, & (tau(j,ibox),ibox=1,ncolprint) enddo endif ! ! ---------------------------------------------------! ! ! ---------------------------------------------------! ! COMPUTE INFRARED BRIGHTNESS TEMPERUATRES ! AND CLOUD TOP TEMPERATURE SATELLITE SHOULD SEE ! ! again this is only done if top_height = 1 or 3 ! ! fluxtop is the 10.5 micron radiance at the top of the ! atmosphere ! trans_layers_above is the total transmissivity in the layers ! above the current layer ! fluxtop_clrsky(j) and trans_layers_above_clrsky(j) are the clear ! sky versions of these quantities. if (top_height .eq. 1 .or. top_height .eq. 3) then !---------------------------------------------------------------------- ! ! DO CLEAR SKY RADIANCE CALCULATION FIRST ! !compute water vapor continuum emissivity !this treatment follows Schwarkzopf and Ramasamy !JGR 1999,vol 104, pages 9467-9499. !the emissivity is calculated at a wavenumber of 955 cm-1, !or 10.47 microns wtmair = 28.9644 wtmh20 = 18.01534 Navo = 6.023E+23 grav = 9.806650E+02 pstd = 1.013250E+06 t0 = 296. if (ncolprint .ne. 0) & write(6,*) 'ilev pw (kg/m2) tauwv(j) dem_wv' do 125 ilev=1,nlev do j=1,npoints !press and dpress are dyne/cm2 = Pascals *10 press(j) = pfull(j,ilev)*10. dpress(j) = (phalf(j,ilev+1)-phalf(j,ilev))*10 !atmden = g/cm2 = kg/m2 / 10 atmden(j) = dpress(j)/grav rvh20(j) = qv(j,ilev)*wtmair/wtmh20 wk(j) = rvh20(j)*Navo*atmden(j)/wtmair rhoave(j) = (press(j)/pstd)*(t0/at(j,ilev)) rh20s(j) = rvh20(j)*rhoave(j) rfrgn(j) = rhoave(j)-rh20s(j) tmpexp(j) = exp(-0.02*(at(j,ilev)-t0)) tauwv(j) = wk(j)*1.e-20*( & (0.0224697*rh20s(j)*tmpexp(j)) + & (3.41817e-7*rfrgn(j)) )*0.98 dem_wv(j,ilev) = 1. - exp( -1. * tauwv(j)) enddo if (ncolprint .ne. 0) then do j=1,npoints ,1000 write(6,'(a10)') 'j=' write(6,'(8I10)') j write(6,'(i2,1X,3(f8.3,3X))') ilev, & qv(j,ilev)*(phalf(j,ilev+1)-phalf(j,ilev))/(grav/100.), & tauwv(j),dem_wv(j,ilev) enddo endif 125 continue !initialize variables do j=1,npoints fluxtop_clrsky(j) = 0. trans_layers_above_clrsky(j)=1. enddo do ilev=1,nlev do j=1,npoints ! Black body emission at temperature of the layer bb(j)=1 / ( exp(1307.27/at(j,ilev)) - 1. ) !bb(j)= 5.67e-8*at(j,ilev)**4 ! increase TOA flux by flux emitted from layer ! times total transmittance in layers above fluxtop_clrsky(j) = fluxtop_clrsky(j) & + dem_wv(j,ilev)*bb(j)*trans_layers_above_clrsky(j) ! update trans_layers_above with transmissivity ! from this layer for next time around loop trans_layers_above_clrsky(j)= & trans_layers_above_clrsky(j)*(1.-dem_wv(j,ilev)) enddo if (ncolprint.ne.0) then do j=1,npoints ,1000 write(6,'(a10)') 'j=' write(6,'(8I10)') j write (6,'(a)') 'ilev:' write (6,'(I2)') ilev write (6,'(a)') & 'emiss_layer,100.*bb(j),100.*f,total_trans:' write (6,'(4(f7.2,1X))') dem_wv(j,ilev),100.*bb(j), & 100.*fluxtop_clrsky(j),trans_layers_above_clrsky(j) enddo endif enddo !loop over level do j=1,npoints !add in surface emission bb(j)=1/( exp(1307.27/skt(j)) - 1. ) !bb(j)=5.67e-8*skt(j)**4 fluxtop_clrsky(j) = fluxtop_clrsky(j) + emsfc_lw * bb(j) & * trans_layers_above_clrsky(j) !clear sky brightness temperature meantbclr(j) = 1307.27/(log(1.+(1./fluxtop_clrsky(j)))) enddo if (ncolprint.ne.0) then do j=1,npoints ,1000 write(6,'(a10)') 'j=' write(6,'(8I10)') j write (6,'(a)') 'id:' write (6,'(a)') 'surface' write (6,'(a)') 'emsfc,100.*bb(j),100.*f,total_trans:' write (6,'(5(f7.2,1X))') emsfc_lw,100.*bb(j), & 100.*fluxtop_clrsky(j), & trans_layers_above_clrsky(j), meantbclr(j) enddo endif ! ! END OF CLEAR SKY CALCULATION ! !---------------------------------------------------------------- if (ncolprint.ne.0) then do j=1,npoints ,1000 write(6,'(a10)') 'j=' write(6,'(8I10)') j write (6,'(a)') 'ts:' write (6,'(8f7.2)') (skt(j),ibox=1,ncolprint) write (6,'(a)') 'ta_rev:' write (6,'(8f7.2)') & ((at(j,ilev2),ibox=1,ncolprint),ilev2=1,nlev) enddo endif !loop over columns do ibox=1,ncol do j=1,npoints fluxtop(j,ibox)=0. trans_layers_above(j,ibox)=1. enddo enddo do ilev=1,nlev do j=1,npoints ! Black body emission at temperature of the layer bb(j)=1 / ( exp(1307.27/at(j,ilev)) - 1. ) !bb(j)= 5.67e-8*at(j,ilev)**4 enddo do ibox=1,ncol do j=1,npoints ! emissivity for point in this layer if (frac_out(j,ibox,ilev).eq.1) then dem(j,ibox)= 1. - & ( (1. - dem_wv(j,ilev)) * (1. - dem_s(j,ilev)) ) else if (frac_out(j,ibox,ilev).eq.2) then dem(j,ibox)= 1. - & ( (1. - dem_wv(j,ilev)) * (1. - dem_c(j,ilev)) ) else dem(j,ibox)= dem_wv(j,ilev) end if if ((prec_frac(j,ibox,ilev).eq.1) .or. & (prec_frac(j,ibox,ilev).eq.3) ) then dem(j,ibox) = 1. - & ( (1. - dem(j,ibox)) * (1. - dem_s_snow(j,ilev)) ) else dem(j,ibox) = dem(j,ibox) end if ! increase TOA flux by flux emitted from layer ! times total transmittance in layers above fluxtop(j,ibox) = fluxtop(j,ibox) & + dem(j,ibox) * bb(j) & * trans_layers_above(j,ibox) ! update trans_layers_above with transmissivity ! from this layer for next time around loop trans_layers_above(j,ibox)= & trans_layers_above(j,ibox)*(1.-dem(j,ibox)) enddo ! j enddo ! ibox if (ncolprint.ne.0) then do j=1,npoints,1000 write (6,'(a)') 'ilev:' write (6,'(I2)') ilev write(6,'(a10)') 'j=' write(6,'(8I10)') j write (6,'(a)') 'emiss_layer:' write (6,'(8f7.2)') (dem(j,ibox),ibox=1,ncolprint) write (6,'(a)') '100.*bb(j):' write (6,'(8f7.2)') (100.*bb(j),ibox=1,ncolprint) write (6,'(a)') '100.*f:' write (6,'(8f7.2)') & (100.*fluxtop(j,ibox),ibox=1,ncolprint) write (6,'(a)') 'total_trans:' write (6,'(8f7.2)') & (trans_layers_above(j,ibox),ibox=1,ncolprint) enddo endif enddo ! ilev do j=1,npoints !add in surface emission bb(j)=1/( exp(1307.27/skt(j)) - 1. ) !bb(j)=5.67e-8*skt(j)**4 end do do ibox=1,ncol do j=1,npoints !add in surface emission fluxtop(j,ibox) = fluxtop(j,ibox) & + emsfc_lw * bb(j) & * trans_layers_above(j,ibox) end do end do !calculate mean infrared brightness temperature do ibox=1,ncol do j=1,npoints meantb(j) = meantb(j)+1307.27/(log(1.+(1./fluxtop(j,ibox)))) end do end do do j=1, npoints meantb(j) = meantb(j) / real(ncol) end do if (ncolprint.ne.0) then do j=1,npoints ,1000 write(6,'(a10)') 'j=' write(6,'(8I10)') j write (6,'(a)') 'id:' write (6,'(a)') 'surface' write (6,'(a)') 'emiss_layer:' write (6,'(8f7.2)') (dem(1,ibox),ibox=1,ncolprint) write (6,'(a)') '100.*bb(j):' write (6,'(8f7.2)') (100.*bb(j),ibox=1,ncolprint) write (6,'(a)') '100.*f:' write (6,'(8f7.2)') (100.*fluxtop(j,ibox),ibox=1,ncolprint) write (6,'(a)') 'meantb(j):' write (6,'(8f7.2)') (meantb(j),ibox=1,ncolprint) end do endif !now that you have the top of atmosphere radiance account !for ISCCP procedures to determine cloud top temperature !account for partially transmitting cloud recompute flux !ISCCP would see assuming a single layer cloud !note choice here of 2.13, as it is primarily ice !clouds which have partial emissivity and need the !adjustment performed in this section ! !If it turns out that the cloud brightness temperature !is greater than 260K, then the liquid cloud conversion !factor of 2.56 is used. ! !Note that this is discussed on pages 85-87 of !the ISCCP D level documentation (Rossow et al. 1996) do j=1,npoints !compute minimum brightness temperature and optical depth btcmin(j) = 1. / ( exp(1307.27/(attrop(j)-5.)) - 1. ) enddo do ibox=1,ncol do j=1,npoints transmax(j) = (fluxtop(j,ibox)-btcmin(j)) & /(fluxtop_clrsky(j)-btcmin(j)) !note that the initial setting of tauir(j) is needed so that !tauir(j) has a realistic value should the next if block be !bypassed tauir(j) = tau(j,ibox) * rec2p13 taumin(j) = -1. * log(max(min(transmax(j),0.9999999),0.001)) enddo if (top_height .eq. 1) then do j=1,npoints if (transmax(j) .gt. 0.001 .and. & transmax(j) .le. 0.9999999) then fluxtopinit(j) = fluxtop(j,ibox) tauir(j) = tau(j,ibox) *rec2p13 endif enddo do icycle=1,2 do j=1,npoints if (tau(j,ibox) .gt. (tauchk )) then if (transmax(j) .gt. 0.001 .and. & transmax(j) .le. 0.9999999) then emcld(j,ibox) = 1. - exp(-1. * tauir(j) ) fluxtop(j,ibox) = fluxtopinit(j) - & ((1.-emcld(j,ibox))*fluxtop_clrsky(j)) fluxtop(j,ibox)=max(1.E-06, & (fluxtop(j,ibox)/emcld(j,ibox))) tb(j,ibox)= 1307.27 & / (log(1. + (1./fluxtop(j,ibox)))) if (tb(j,ibox) .gt. 260.) then tauir(j) = tau(j,ibox) / 2.56 end if end if end if enddo enddo endif do j=1,npoints if (tau(j,ibox) .gt. (tauchk )) then !cloudy box !NOTE: tb is the cloud-top temperature not infrared brightness temperature !at this point in the code tb(j,ibox)= 1307.27/ (log(1. + (1./fluxtop(j,ibox)))) if (top_height.eq.1.and.tauir(j).lt.taumin(j)) then tb(j,ibox) = attrop(j) - 5. tau(j,ibox) = 2.13*taumin(j) end if else !clear sky brightness temperature tb(j,ibox) = meantbclr(j) end if enddo ! j enddo ! ibox if (ncolprint.ne.0) then do j=1,npoints,1000 write(6,'(a10)') 'j=' write(6,'(8I10)') j write (6,'(a)') 'attrop:' write (6,'(8f7.2)') (attrop(j)) write (6,'(a)') 'btcmin:' write (6,'(8f7.2)') (btcmin(j)) write (6,'(a)') 'fluxtop_clrsky*100:' write (6,'(8f7.2)') & (100.*fluxtop_clrsky(j)) write (6,'(a)') '100.*f_adj:' write (6,'(8f7.2)') (100.*fluxtop(j,ibox),ibox=1,ncolprint) write (6,'(a)') 'transmax:' write (6,'(8f7.2)') (transmax(ibox),ibox=1,ncolprint) write (6,'(a)') 'tau:' write (6,'(8f7.2)') (tau(j,ibox),ibox=1,ncolprint) write (6,'(a)') 'emcld:' write (6,'(8f7.2)') (emcld(j,ibox),ibox=1,ncolprint) write (6,'(a)') 'total_trans:' write (6,'(8f7.2)') & (trans_layers_above(j,ibox),ibox=1,ncolprint) write (6,'(a)') 'total_emiss:' write (6,'(8f7.2)') & (1.0-trans_layers_above(j,ibox),ibox=1,ncolprint) write (6,'(a)') 'total_trans:' write (6,'(8f7.2)') & (trans_layers_above(j,ibox),ibox=1,ncolprint) write (6,'(a)') 'ppout:' write (6,'(8f7.2)') (tb(j,ibox),ibox=1,ncolprint) enddo ! j endif end if ! ---------------------------------------------------! ! ! ---------------------------------------------------! ! DETERMINE CLOUD TOP PRESSURE ! ! again the 2 methods differ according to whether ! or not you use the physical cloud top pressure (top_height = 2) ! or the radiatively determined cloud top pressure (top_height = 1 or 3) ! !compute cloud top pressure do 30 ibox=1,ncol !segregate according to optical thickness if (top_height .eq. 1 .or. top_height .eq. 3) then !find level whose temperature !most closely matches brightness temperature do j=1,npoints nmatch(j)=0 enddo do 29 k1=1,nlev-1 if (top_height_direction .eq. 2) then ilev = nlev - k1 else ilev = k1 end if !cdir nodep do j=1,npoints if (ilev .ge. itrop(j)) then if ((at(j,ilev) .ge. tb(j,ibox) .and. & at(j,ilev+1) .le. tb(j,ibox)) .or. & (at(j,ilev) .le. tb(j,ibox) .and. & at(j,ilev+1) .ge. tb(j,ibox))) then nmatch(j)=nmatch(j)+1 match(j,nmatch(j))=ilev end if end if enddo 29 continue do j=1,npoints if (nmatch(j) .ge. 1) then k1 = match(j,nmatch(j)) k2 = k1 + 1 logp1 = log(pfull(j,k1)) logp2 = log(pfull(j,k2)) atd = max(tauchk,abs(at(j,k2) - at(j,k1))) logp=logp1+(logp2-logp1)*abs(tb(j,ibox)-at(j,k1))/atd ptop(j,ibox) = exp(logp) if(abs(pfull(j,k1)-ptop(j,ibox)) .lt. & abs(pfull(j,k2)-ptop(j,ibox))) then levmatch(j,ibox)=k1 else levmatch(j,ibox)=k2 end if else if (tb(j,ibox) .le. attrop(j)) then ptop(j,ibox)=ptrop(j) levmatch(j,ibox)=itrop(j) end if if (tb(j,ibox) .ge. atmax(j)) then ptop(j,ibox)=pfull(j,nlev) levmatch(j,ibox)=nlev end if end if enddo ! j else ! if (top_height .eq. 1 .or. top_height .eq. 3) do j=1,npoints ptop(j,ibox)=0. enddo do ilev=1,nlev do j=1,npoints if ((ptop(j,ibox) .eq. 0. ) & .and.(frac_out(j,ibox,ilev) .ne. 0)) then ptop(j,ibox)=phalf(j,ilev) levmatch(j,ibox)=ilev end if end do end do end if do j=1,npoints if (tau(j,ibox) .le. (tauchk )) then ptop(j,ibox)=0. levmatch(j,ibox)=0 endif enddo 30 continue ! ! ! ---------------------------------------------------! ! ! ---------------------------------------------------! ! DETERMINE ISCCP CLOUD TYPE FREQUENCIES ! ! Now that ptop and tau have been determined, ! determine amount of each of the 49 ISCCP cloud ! types ! ! Also compute grid box mean cloud top pressure and ! optical thickness. The mean cloud top pressure and ! optical thickness are averages over the cloudy ! area only. The mean cloud top pressure is a linear ! average of the cloud top pressures. The mean cloud ! optical thickness is computed by converting optical ! thickness to an albedo, averaging in albedo units, ! then converting the average albedo back to a mean ! optical thickness. ! !compute isccp frequencies !reset frequencies do 38 ilev=1,7 do 38 ilev2=1,7 do j=1,npoints ! if (sunlit(j).eq.1 .or. top_height .eq. 3) then fq_isccp(j,ilev,ilev2)= 0. else fq_isccp(j,ilev,ilev2)= output_missing_value end if enddo 38 continue !reset variables need for averaging cloud properties do j=1,npoints if (sunlit(j).eq.1 .or. top_height .eq. 3) then totalcldarea(j) = 0. meanalbedocld(j) = 0. meanptop(j) = 0. meantaucld(j) = 0. else totalcldarea(j) = output_missing_value meanalbedocld(j) = output_missing_value meanptop(j) = output_missing_value meantaucld(j) = output_missing_value end if enddo ! j boxarea = 1./real(ncol) do 39 ibox=1,ncol do j=1,npoints if (tau(j,ibox) .gt. (tauchk ) & .and. ptop(j,ibox) .gt. 0.) then box_cloudy(j,ibox)=.true. endif if (box_cloudy(j,ibox)) then if (sunlit(j).eq.1 .or. top_height .eq. 3) then boxtau(j,ibox) = tau(j,ibox) if (tau(j,ibox) .ge. isccp_taumin) then totalcldarea(j) = totalcldarea(j) + boxarea !convert optical thickness to albedo albedocld(j,ibox) & = (tau(j,ibox)**0.895)/((tau(j,ibox)**0.895)+6.82) !contribute to averaging meanalbedocld(j) = meanalbedocld(j) & +albedocld(j,ibox)*boxarea end if endif endif if (sunlit(j).eq.1 .or. top_height .eq. 3) then if (box_cloudy(j,ibox)) then !convert ptop to millibars ptop(j,ibox)=ptop(j,ibox) / 100. !save for output cloud top pressure and optical thickness boxptop(j,ibox) = ptop(j,ibox) if (tau(j,ibox) .ge. isccp_taumin) then meanptop(j) = meanptop(j) + ptop(j,ibox)*boxarea end if !reset itau(j), ipres(j) itau(j) = 0 ipres(j) = 0 !determine optical depth category if (tau(j,ibox) .lt. isccp_taumin) then itau(j)=1 else if (tau(j,ibox) .ge. isccp_taumin & & .and. tau(j,ibox) .lt. 1.3) then itau(j)=2 else if (tau(j,ibox) .ge. 1.3 & .and. tau(j,ibox) .lt. 3.6) then itau(j)=3 else if (tau(j,ibox) .ge. 3.6 & .and. tau(j,ibox) .lt. 9.4) then itau(j)=4 else if (tau(j,ibox) .ge. 9.4 & .and. tau(j,ibox) .lt. 23.) then itau(j)=5 else if (tau(j,ibox) .ge. 23. & .and. tau(j,ibox) .lt. 60.) then itau(j)=6 else if (tau(j,ibox) .ge. 60.) then itau(j)=7 end if !determine cloud top pressure category if ( ptop(j,ibox) .gt. 0. & .and.ptop(j,ibox) .lt. 180.) then ipres(j)=1 else if(ptop(j,ibox) .ge. 180. & .and.ptop(j,ibox) .lt. 310.) then ipres(j)=2 else if(ptop(j,ibox) .ge. 310. & .and.ptop(j,ibox) .lt. 440.) then ipres(j)=3 else if(ptop(j,ibox) .ge. 440. & .and.ptop(j,ibox) .lt. 560.) then ipres(j)=4 else if(ptop(j,ibox) .ge. 560. & .and.ptop(j,ibox) .lt. 680.) then ipres(j)=5 else if(ptop(j,ibox) .ge. 680. & .and.ptop(j,ibox) .lt. 800.) then ipres(j)=6 else if(ptop(j,ibox) .ge. 800.) then ipres(j)=7 end if !update frequencies if(ipres(j) .gt. 0.and.itau(j) .gt. 0) then fq_isccp(j,itau(j),ipres(j))= & fq_isccp(j,itau(j),ipres(j))+ boxarea end if end if end if enddo ! j 39 continue !compute mean cloud properties do j=1,npoints if (totalcldarea(j) .gt. 0.) then ! code above guarantees that totalcldarea > 0 ! only if sunlit .eq. 1 .or. top_height = 3 ! and applies only to clouds with tau > isccp_taumin meanptop(j) = meanptop(j) / totalcldarea(j) meanalbedocld(j) = meanalbedocld(j) / totalcldarea(j) meantaucld(j) = (6.82/((1./meanalbedocld(j))-1.))**(1./0.895) else ! this code is necessary so that in the case that totalcldarea = 0., ! that these variables, which are in-cloud averages, are set to missing ! note that totalcldarea will be 0. if all the clouds in the grid box have ! tau < isccp_taumin meanptop(j) = output_missing_value meanalbedocld(j) = output_missing_value meantaucld(j) = output_missing_value end if enddo ! j ! ! ---------------------------------------------------! ! ---------------------------------------------------! ! OPTIONAL PRINTOUT OF DATA TO CHECK PROGRAM ! if (debugcol.ne.0) then ! do j=1,npoints,debugcol !produce character output do ilev=1,nlev do ibox=1,ncol acc(ilev,ibox)=0 enddo enddo do ilev=1,nlev do ibox=1,ncol acc(ilev,ibox)=frac_out(j,ibox,ilev)*2 if (levmatch(j,ibox) .eq. ilev) & acc(ilev,ibox)=acc(ilev,ibox)+1 enddo enddo !print test write(ftn09,11) j 11 format('ftn09.',i4.4) open(9, FILE=ftn09, FORM='FORMATTED') write(9,'(a1)') ' ' write(9,'(10i5)') & (ilev,ilev=5,nlev,5) write(9,'(a1)') ' ' do ibox=1,ncol write(9,'(40(a1),1x,40(a1))') & (cchar_realtops(acc(ilev,ibox)+1),ilev=1,nlev) & ,(cchar(acc(ilev,ibox)+1),ilev=1,nlev) end do close(9) if (ncolprint.ne.0) then write(6,'(a1)') ' ' write(6,'(a2,1X,5(a7,1X),a50)') & 'ilev', & 'pfull','at', & 'cc*100','dem_s','dtau_s', & 'cchar' ! do 4012 ilev=1,nlev ! write(6,'(60i2)') (box(i,ilev),i=1,ncolprint) ! write(6,'(i2,1X,5(f7.2,1X),50(a1))') ! & ilev, ! & pfull(j,ilev)/100.,at(j,ilev), ! & cc(j,ilev)*100.0,dem_s(j,ilev),dtau_s(j,ilev) ! & ,(cchar(acc(ilev,ibox)+1),ibox=1,ncolprint) !4012 continue write (6,'(a)') 'skt(j):' write (6,'(8f7.2)') skt(j) write (6,'(8I7)') (ibox,ibox=1,ncolprint) write (6,'(a)') 'tau:' write (6,'(8f7.2)') (tau(j,ibox),ibox=1,ncolprint) write (6,'(a)') 'tb:' write (6,'(8f7.2)') (tb(j,ibox),ibox=1,ncolprint) write (6,'(a)') 'ptop:' write (6,'(8f7.2)') (ptop(j,ibox),ibox=1,ncolprint) endif enddo end if return end